\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=\left(\frac{1}{sin^2a}-1\right).cos^2a\)
\(=\left(\frac{1-sin^2a}{sin^2a}\right).cos^2a=\frac{cos^2a}{sin^2a}.cos^2a=cot^2a.cos^2a\)