\(A=5\sin^2 \alpha +6\cos^2 \alpha \\=6(\sin^2 \alpha +\cos^2 \alpha )-\sin^2 \alpha \\=6-\sin^2 \alpha =6-\dfrac 9{25}=\dfrac{141}{25}\)
\(A=5\sin^2 \alpha +6\cos^2 \alpha \\=6(\sin^2 \alpha +\cos^2 \alpha )-\sin^2 \alpha \\=6-\sin^2 \alpha =6-\dfrac 9{25}=\dfrac{141}{25}\)
Rút gọn các biểu thức sau:
a.A= \(\dfrac{1+2\sin a\cos a}{\cos^2a-sin^2a}\)
b. \(C=\sin^4a+\sin^2a.\cos^2a+\cos^2a\)
Các bạn ơi giúp mk với . Một câu thôi cũng được.
Biết sin a=3/5. Tính giá trị biểu thức a= 2.tan a+cos a
a) Biết Sin α.cos α=\(\dfrac{12}{25}\). Tính tỉ số lượng giác của góc α
b) Biết Sin α=\(\dfrac{3}{5}\). Tính A=5.Sin2α + 6cos2α
c) Biết cot α=\(\dfrac{4}{3}\). Tính D=\(\dfrac{Sin\alpha+cos\alpha}{Sin\alpha-cos\alpha}\)
1)
a) cot2 α+ 1 = \(\dfrac{1}{sin^2a}\)
b)1 + tan2 α = \(\dfrac{1}{cos^2a}\)
c) sin4 α+ cos2α = 2.sin2α . cos2 α
d) \(\dfrac{1-4.sin^2a.cos^2a}{\left(sina+cosa\right)^2}=1-2.sina.cosa\)
e) \(\dfrac{2.sina.cosa-1}{cos^2a-sin^2a}=\dfrac{tana-1}{tana+1}\)
Bài 1 : Cho biết sin=0,6. Tính cos, tg và cotg
Bài 2:
1. Chứng minh rằng
a) tg2 a+1=\(\dfrac{1}{cos^2a}\)
b) cotg2 a+1=\(\dfrac{1}{sin^2a}\)
c) cos4 a-sin4 a=2cos2 a-1
2. Áp dụng: tính sin, cos a, cotg a, biết tg a=2
Bài 3: Biết tg=4/3. Tính sin, cos, cotg
Bài 1: Cho \(\alpha\&\beta\) là hai góc phụ nhau . Biết \(\cos\alpha=\dfrac{1}{2}\). Tính giá trị của biểu thức : P = \(3\sin^2\alpha+4\tan^3\beta\)
Bài 2: a) Tính P = \(4\sin^2\alpha-6\cos^2\alpha\) , biết \(\cos\alpha=\dfrac{4}{5}\)
b) Cho \(\alpha\) là góc nhọn . Rút gọn biểu thức : A = \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Giúp mình vs cần gấp lắm !!!
rút gọn biểu thức :
A = 1 + \(\dfrac{2\sin\alpha.\cos\alpha}{\cos^2\alpha-\sin^2\alpha}\)
B = \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Rút gọn các biểu thức sau:
a. \(\dfrac{1}{1+\sin a}+\dfrac{1}{1-\sin a}-2\tan^2a\)
Cho \(\cot\alpha=\dfrac{1}{3}\). Tính giá trị biểu thức \(Q=\dfrac{\cos\alpha-\sin\alpha}{\cos\alpha+\sin\alpha}\)