\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\cdot\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
=1
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\cdot\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
=1
Rút gọn các biểu thức sau:
a.A= \(\dfrac{1+2\sin a\cos a}{\cos^2a-sin^2a}\)
b. \(C=\sin^4a+\sin^2a.\cos^2a+\cos^2a\)
Các bạn ơi giúp mk với . Một câu thôi cũng được.
1)
a) cot2 α+ 1 = \(\dfrac{1}{sin^2a}\)
b)1 + tan2 α = \(\dfrac{1}{cos^2a}\)
c) sin4 α+ cos2α = 2.sin2α . cos2 α
d) \(\dfrac{1-4.sin^2a.cos^2a}{\left(sina+cosa\right)^2}=1-2.sina.cosa\)
e) \(\dfrac{2.sina.cosa-1}{cos^2a-sin^2a}=\dfrac{tana-1}{tana+1}\)
Sin² α+ cos^4 α + 2sin α . cos^2 α
Sin^6 α – sin^6 α + 3sin α . Cos^2 α
Rút gọn
\(1,D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)
\(2,E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)
\(3,F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
Biết \(\sin a=\dfrac{3}{5}.\) Tính giá trị biểu thức \(A=5\sin^2a+6\cos^2a\)
Bài 1 : Cho biết sin=0,6. Tính cos, tg và cotg
Bài 2:
1. Chứng minh rằng
a) tg2 a+1=\(\dfrac{1}{cos^2a}\)
b) cotg2 a+1=\(\dfrac{1}{sin^2a}\)
c) cos4 a-sin4 a=2cos2 a-1
2. Áp dụng: tính sin, cos a, cotg a, biết tg a=2
Bài 3: Biết tg=4/3. Tính sin, cos, cotg
1.cho góc nhọn a cmr: sin a<tan a;cos a<cot a
2.cmr:1+\(tan^2\)a=\(\frac{1}{cos^2a}\);1+\(cot^2\)a=\(\frac{1}{sin^2a}\)
Chứng minh rằng với mọi gíc nhọn α tùy ý, mỗi biểu thức sau không phụ thuộc α
a, A=(Sin α + Cos α )2 + (Sin α - Cos α )2
b, B=Sin6 α + Cos6 α + 3Sin2 α . Cos2 α
Rút gọn các biểu thức ( không phụ thuộc c)
a) \(\left(sinc+cosc\right)^2+\left(sin^2c-cos^2c\right)^2\)
b) \(sin^6c+cos^6c+3sin^2.cos^2\)