Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
không còn gì để nói

chứng minh: \(1^2+2^2+3^2+4^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

soyeon_Tiểu bàng giải
13 tháng 10 2016 lúc 17:26

Đặt A = 12 + 22 + 32 + 42 + ... + n2

A = 1 + (1 + 1).2 + (1 + 2).3 + (1 + 3).4 + ... + (1 + n - 1).n

A = 1 + 1.2 + 2 + 3 + 2.3 + 4 + 3.4 + ... + n + (n - 1).n

A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + (1 + 2 + 3 + 4 + ... + n)

A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + \(\frac{n.\left(n+1\right)}{2}\)

Đặt B = 1.2 + 2.3 + 3.4 + ... + (n - 1).n

3B = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + (n - 1).n.[(n + 1) - (n - 2)]

3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + (n - 1).n.(n + 1) - (n - 2).(n - 1).n

3B = (n - 1).n.(n + 1)

\(B=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)

\(A=\frac{n.\left(n+1\right)}{2}+\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)

\(A=\frac{3n.\left(n+1\right)+2.\left(n-1\right).n.\left(n+1\right)}{6}\)

\(A=\frac{n.\left(n+1\right).\left(3+2n-2\right)}{6}=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\left(đpcm\right)\)


Các câu hỏi tương tự
♥ℒℴѵe♥
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
TRần Minh THắng
Xem chi tiết
Đỗ Thành Trung
Xem chi tiết
Itsuka Hiro
Xem chi tiết
Kayasari Ryuunosuke
Xem chi tiết
Đỗ Thành Trung
Xem chi tiết
Hoa Thiên Cốt
Xem chi tiết
lala
Xem chi tiết