Đặt A = 12 + 22 + 32 + 42 + ... + n2
A = 1 + (1 + 1).2 + (1 + 2).3 + (1 + 3).4 + ... + (1 + n - 1).n
A = 1 + 1.2 + 2 + 3 + 2.3 + 4 + 3.4 + ... + n + (n - 1).n
A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + (1 + 2 + 3 + 4 + ... + n)
A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + \(\frac{n.\left(n+1\right)}{2}\)
Đặt B = 1.2 + 2.3 + 3.4 + ... + (n - 1).n
3B = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + (n - 1).n.[(n + 1) - (n - 2)]
3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + (n - 1).n.(n + 1) - (n - 2).(n - 1).n
3B = (n - 1).n.(n + 1)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
\(A=\frac{n.\left(n+1\right)}{2}+\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
\(A=\frac{3n.\left(n+1\right)+2.\left(n-1\right).n.\left(n+1\right)}{6}\)
\(A=\frac{n.\left(n+1\right).\left(3+2n-2\right)}{6}=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\left(đpcm\right)\)