Lời giải:
TH1: \(x,y\) đều dương.
Xét hiệu:
\(2(x^{2018}+y^{2018})-(x+y)(x^{2017}+y^{2017})=x^{2018}+y^{2018}-xy^{2017}-x^{2017}y\)
\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=x^{2017}(x-y)-y^{2017}(x-y)\)
\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x^{2017}-y^{2017})\)
\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x-y)(x^{2016}+...+y^{2016})\)
\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)^2(x^{2016}+...+y^{2016})\geq 0\) với mọi \(x,y>0\)
\(\Leftrightarrow 2(x^{2018}+y^{2018})\geq 2(x^{2017}+y^{2017})\)
\(\Leftrightarrow x^{2018}+y^{2018}\geq x^{2017}+y^{2017}\) (1)
TH2: \(x,y\) trái dấu. Giả sử \(x>0; y< 0\)
\(x+y=2\Rightarrow x=2-y> 2\)
\(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)\)
Vì \(x>2 \Rightarrow x^{2017}(x-1)>0\)
\(y< 0\Rightarrow y^{2017}< 0; y-1< 0\Rightarrow y^{2017}(y-1)>0\)
Do đó: \(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)>0\)
\(\Rightarrow x^{2018}+y^{2018}> x^{2017}+y^{2017}\) (2)
Từ (1),(2) ta có đpcm.