Ta có: \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)
=> a2 = x.k; b2 = y.k
=> \(\frac{a^2}{b^2}=\frac{x.k}{y.k}=\frac{x}{y}\left(đpcm\right)\)
a/k = x/a => a2 = kx (1)
b/k = y/b => b2 = ky (2)
chia (1) cho (2) có;
a2/b2 =x/y
Ta có: \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)
=> a2 = x.k; b2 = y.k
=> \(\frac{a^2}{b^2}=\frac{x.k}{y.k}=\frac{x}{y}\left(đpcm\right)\)
a/k = x/a => a2 = kx (1)
b/k = y/b => b2 = ky (2)
chia (1) cho (2) có;
a2/b2 =x/y
cho \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}.\) chứng minh : \(\frac{a^2}{b^2}=\frac{x}{y}\)
cho \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)
chứng minh \(\frac{a^2}{b^2}=\frac{x}{y}\)
cho \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)
chứng minh \(\frac{a^2}{b^2}=\frac{x}{y}\)
Cho \(\frac{a}{k}=\frac{x}{a}\) ; \(\frac{b}{k}=\frac{y}{b}\). Chứng minh \(\frac{a^2}{b^2}=\frac{x}{y}\)
\(Cho:\frac{a}{k}=\frac{x}{a}và\frac{b}{k}=\frac{y}{b}.CMR:\frac{a^2}{b^2}=\frac{x}{y}\)
cho \(\frac{K}{x}=\frac{a}{c};\frac{K}{y}=\frac{b}{d};c+d=K\). Chứng minh ax + by = k2
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
cho \(\frac{a}{k}=\frac{x}{a}\); \(\frac{b}{k}=\frac{y}{b}\)
CMR:\(\frac{a^2}{b^2}=\frac{x}{y}\)
Cho \(\frac{x^{\text{4}}}{a}+\frac{y^{\text{4}}}{b}=\frac{1}{a+b};x^2+y^2=1\)
Chứng minh rằng:\(\frac{x^{200\text{4}}}{a^{1002}}+\frac{y^{200\text{4}}}{b^{1002}}=\frac{2}{\left(a+b\right)^{102}}\)