a: Xét ΔABD và ΔKBD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔABD=ΔKBD
a: Xét ΔABD và ΔKBD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔABD=ΔKBD
Bài 17. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm K sao choAB =BK. Kẻ BD là phân giác của góc ABC.
a) Chứng minh rằng: AD = DK.
b) Kẻ đường cao AH của ∆ABC. Chứng minh: AH // DK.
c) Gọi giao điểm của DK và AB là E, lấy M là trung điểm của EC. Chứng minh ba
điểm B, D, M thẳng hàng.
Bìa 1:
Cho tam giác nhọn ABC(AB < AC). Gọi M là trung điểm của BC. Trên tia đối của
tia MA lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh rằng: AMBA = AMCD.
b) Kẻ AH vuông góc với BC tại H và DK vuông góc với BC tại K. Chứng minh rằng: AH= DK.
c) Tia phân giác của ABC cắt AH và AM lần lượt tại I và E. Tia phân giác của BCD cắt KD và
MD lần lượt tại J và F. Chứng minh rằng: ABIA = ACJD.
d) Chứng minh rằng: I, M, J thẳng hàng.
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Cho ABC vuông tại A, có AB < AC . Trên cạnh BC lấy điểm D sao cho BD = BA . Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC. a. Chứng minh : BAD = BDA; b. Chứng minh : AD là phân giác của góc HAC c. So sánh ABC và ACB d. Chứng minh : AK = AH . e. Chứng minh : AB + AC < BC + AH
Cho tam giác ABC vuông tại A, A C B ^ = 30 ° . Tia phân giác của góc ABC cắt cạnh AC tại M. Lấy điểm K trên cạnh BC sao cho BK = BA.
a) Chứng minh ∆ A B M = ∆ K B M
b) Gọi E là giao điểm của các đường thẳng AB và KM. Chứng minh tam giác MEC cân.
c) Chứng minh tam giác BEC đều.
d) Kẻ A H ⊥ E M . ( H ∈ E M ) . Các đường thẳng AH và EC cắt nhau tại N. Chứng minh K N ⊥ A C .
cho tam giác ABC vuông tại A đường phân giác BD kẻ AE vuông góc với BD tại E AE cắt BC ở K
a, Chứng Minh AB=BK
b,Chứnh minh DK vuông góc với BC
c, Kẻ AH vuông góc Bc tại J gọi I là giao điểm của AH và BD chứng minh IKsonh sonh AC
Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh BC lấy điểm E sao cho BE= BA, kẻ BD là tia phân giác của góc ABC (D thuộc AC).
a) Chứng minh: ∆ABD = ∆EBD
b) Chứng minh: DE vuông góc với BC
c) Gọi K là giao điểm của BA và ED. Chứng minh: BK = BC
cho tam giác ABC vuông tại A , đường cao AH . Trên cạnh BC lấy điểm D sao cho BD = BA a) Chứng minh góc BAD = BDA b) Chứng minh AD là tia phân giác của góc HAC c) Vẽ DK AC ( K AC) . Chứng minh AH = AK d) Chứng minh AB + AC < BC + 2AH