Áp dụng bđt cô si dạng engel cho 2 số dương:
\(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)
Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}\)
bạn ơi bạn giải cách khác được ko mình chưa học BĐT cô si
Áp dụng bđt cô si dạng engel cho 2 số dương:
\(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)
Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}\)
bạn ơi bạn giải cách khác được ko mình chưa học BĐT cô si
\(Cho:a,b,c>0.CMR:\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Cho a,b,c >0 và a+b+c=1
CMR \(\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge\frac{1}{9}\)
Giải giúp mình với
CMR \(\frac{y-z}{\left(x-y\right).\left(x-z\right)}+\frac{z-x}{\left(y-z\right).\left(y-x\right)}+\frac{x-y}{\left(z-x\right).\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)Cho a,b,c,x,y,z \(\ne\)0 và \(a+b+c=x+y+z=\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\)CMR \(a^2x+b^2y+c^2z=0\)Thanks nhiều ạ
\(Cho:A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)\)
\(B=\frac{2}{\left(x+y\right)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right)\)
\(C=\frac{2}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
Thực hiện phép tính : \(A+B+C\)
\(Cho:a;b\ge0.\)
\(CMR:\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
1. Cho \(a>0,b>0\). C/m \(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
2. Cho \(a\ne0,b\ne0\). C/m \(a^4+b^4\le\frac{a^6}{b^2}+\frac{b^6}{a^2}\)
3. C/m \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
4. C/m \(\frac{x^2+y^2}{2}\ge\left(\frac{x+y}{2}\right)^2\)
5. \(\forall a,b>0\). C/m \(\frac{a^3}{b}+b^3>a^2+ab\)
Cho : \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\left(a,b,c,x,y,z\ne0\right)\)
CMR : \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Bài 1: Cho a,b,c đôi một khác nhau. CMR:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)=1
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
\(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)
Cho hai số x, thay đổi luôn thỏa mãn x>0, y<0, x+y=1
a) Rút gọn biểu thức A
b) CMR A<-4