Ta có:\(\left(a+b\right)^2\)
\(=a^2+2ab+b^2\)
\(=1+2ab\)(do \(a^2+b^2=1\))
Lại có:\(1=a^2+b^2\ge2ab\)
\(\Leftrightarrow2ab\le1\)
\(\Leftrightarrow a^2+2ab+b^2\le1+1\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(đpcm\right)\)
Bo de : \(h^2+anh^2\ge\frac{\left(h+anh\right)^2}{2}\)
\(< =>\left(h-anh\right)^2\ge0\)(right)
Dau "=" xay ra \(< =>h=anh\)
Ap dung \(1=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)\(< =>\left(a+b\right)^2\le2\)
Dau "=" xay ra \(< =>a=b=\frac{1}{\sqrt{2}}\)
áp dụng bunhia - cốp xki với bộ số (a,b)(1,1)
\(\left(a^2+b^2\right)\left(1+1\right)>=\left(a+b\right)^2\)
\(2>=\left(a+b\right)^2\)
<=> đpcm
\(\)