Giải giúp em câu c với ạ.
a) Vẽ đồ thị (P): \(y=-\dfrac{1}{4}x^2\)
b) Bằng phép tính tìm tọa độ giao điểm của (P) và (D): \(y=\dfrac{1}{2}x\)
c) Tìm các điểm M trên (P) có hoành độ gấp 2 lần tung độ.
Cho hai hàm số y=-x+2 và y=x^2 có đồ thị lần lượt là (d) và (P).
Điểm A thuộc (P) có hoành độ –2; điểm B(0; –1), tìm điểm C thuộc trục hoành sao cho diện tích tam giác ABC bằng 4(đvdt).
Cho parabol (P): \(y=\dfrac{1}{4}x^2\) và đường thẳng (d) đi qua 2 điểm A, B trên (P) có hoành độ lần lượt là \(-2,\) 4.
a. Vẽ (P).
b. Viết phương trình đường thẳng (d).
c. Tìm tọa độ giao điểm M trên cung AB của (P) có hoành độ \(x\in\left[-2;4\right]\) sao cho tam giác ABC có diện tích lớn nhất.
(Thầy NVL giúp em với ạ em cảm ơn thầy nhiều ạ)
cho 2 hàm số : y=3x và y=-x+3
a. vẽ đths trên cùng 1 mặt phẳng toạ độ
b. xác định hs y=ax+b (a khác 0) bt rằng đths đó cắt đt y=-x+2 tại 1 điểm trên trục tung và đi qua điêm A(1;3)
c. tìm điểm thuộc đt y=-x+2 có hoành độ gấp 3 tung độ
Cho(ρ) y= \(\dfrac{x^2}{2}\)
(d) y= \(\dfrac{x}{2}+3\)
a/ Vẽ (p) và(d)
b/ Tìm tọa độ giao điểm A và B của (p) và (d) với \(x_A>0;x_B< 0\)
c/ Tính chu vi △AOB
Cho hàm số y=3/2 x^2 (P) và y=x+1/2 (d) a) vẽ đồ thị (P) và (d) trên cùng một mặt phẳng toạ độ. b) tìm toạ độ giao điểm của (P) và (d). c) viết phương trình đường thẳng cắt (P) tại 2 điểm có hoành độ là -4 và 2.
a) Tìm xx để biểu thức sau có nghĩa: P=\(\sqrt{5x+3}+2018.\sqrt{x}\)
b) Cho hàm số y=\(\dfrac{1}{2}x^2\). Điểm Đ có hoành độ x=−2 thuộc đồ thị hàm số. Tìm tọa độ điểm D
c) Tìm giá trị của a và b để đường thẳng d:y=ax+b−1 đi qua hai điểm A(1;1) và B(2;3).
Cho (P) : y = \(\dfrac{1}{2}\) \(^{x^2}\)và 2 điểm A(-2;2) ; B(4;8) nằm trên (P). Gọi M là điểm thay đổi trên (P) và có hoành độ là M (m>2 ; m<4). Tìm m để diện tích tam giác AMB bé nhất
Cho hàm số y =\(\dfrac{-1}{2}\)x2 có đồ thị là (P)
Tìm giá trị của m để đường thẳng (d): y = \(\dfrac{3}{2}\)x + 2m - 1 cắt đồ thị (P) tại điểm khác gốc toạ độ và có hoành độ gấp hai lần tung độ.
Mong anh chị, các bạn giúp em bài này ạ. Em cảm ơn nhiều!