Cho \(x+y+z=6\) , \(x^2+y^2+z^2=12\) . Tính giá trị của biểu thức
A = \(\left(x-3\right)^{2020}+\left(y-3\right)^{2020}+\left(z-3\right)^{2020}\)
Biết x+ y+ z= 2020 Tính
P=\(\frac{\text{x^3+y^3+z^3-3xyz}}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
cho \(x^2-y=a;y^2-z=bvoiz^2-x=c\left(a,b,c\right)lahangso\) số
cmr giá trị của biểu thức ko phụ thuộc vào giá trị biểu thức x,y,z
\(p=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3.\left(y-x^2\right)=xyz.\left(xyz-1\right)\)
các bạn làm hộ mình nha
tính gia trị biểu thức
A=\(\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)
Cho x-y+z=2. Tính giá trj của biểu thức: \(P=\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
Tìm giá trị nhỏ nhất của P=\(\left(x-1\right)^{2020}\)+\(\left(y-1\right)^{2021}\)+\(\left(z-1\right)^{2022}\)
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Cho các số x,y,z thỏa mãn x^2+2y^2+z^2-2xy-2y-4z+5=0.Tính giá trị biểu thức A=(x-1)^2020+(y-2)^2020+(z-3)^2020