cho x,y,z>0 và \(x^2+y^2+z^2=3\)
tìm Min \(A=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}\)
giải hộ mk nhé mk đang cần gấp
cho x, y, z>0; \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) . Tìm A max khi A=\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
cho x>=y>=z>0.chứng minh \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}>=x^2+y^2+z^2\)
cho x>=y>=z>0. chứng minh \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}>=x^2+y^2+z^2\)
cho x,y,z>0 thảo mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
chứng minh rằng A=\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Cho x,y,z > 0. CMR: \(\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
Cho \(x;y;z>0\)
\(CMR:\) \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{3}{4}\)
Find the maximum value of \(M=\frac{x}{2x+y}+\frac{y}{2y+z}+\frac{z}{2z+x}\) , x,y,z > 0
Cho x;y;z>0.CMR:\(\frac{\sqrt{x^2+2y^2}}{z}+\frac{\sqrt{y^2+2z^2}}{x}+\frac{\sqrt{z^2+2x^2}}{y}\ge\sqrt{3}\)