Áp dụng B.C.S ta có:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự cộng lại ta có dpcm.
Dấu = khi x=y=z=1
Áp dụng B.C.S ta có:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự cộng lại ta có dpcm.
Dấu = khi x=y=z=1
Cho ba số dương x, y, z thỏa mãn. Chứng minh rằng:
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Cho x,y,z là 3 số dương thỏa mãn x+y+z=3
Chứng minh rằng \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y
}{y+\sqrt{3y+zx
}}+\frac{z}{z+\sqrt{3z+xy}}\le1
\)
Các bạn giúp mình với :(((
Cho x, y, z là 3 số dương thỏa mãn: x+y+z=3. Chứng minh rằng:
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+xz}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Cho \(x,y,z\)là các số dương thỏa mãn \(x+y+z=3\)
CM:\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
cho ba số thực dương x,y,z thỏa mãn x+y+z=3
CMR: \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\)
Cho x,y,z dương, x+y+z = 3
Chứng minh rằng : \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+xz}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
cho 3 số x,y,z dương thỏa mãn x+y+z=3
chứng minh
\(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
a)Cho x,y,z là ba số dương thỏa mãn x+y+z=3.Chứng minh rằng :
\(\dfrac{x}{x+\sqrt{3x+yz}}\)+\(\dfrac{y}{y+\sqrt{3y+zx}}\)+\(\dfrac{z}{z+\sqrt{3z+xy}}\)≤1
b)Chứng minh rằng: \(\dfrac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3c\right)}+\sqrt{c\left(c+3a\right)}}\)≥\(\dfrac{1}{2}\)với a,b,c là các số dương
Cho x,y,z > 0 và x+y+z=3
cm \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)