Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)
hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)
Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)
Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2
Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z
hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)
Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)
Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ≥16
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2
Áp dụng (a + b)2 > 4, ta có:
\(\left(x+y+z\right)^2\ge4\left(x+y\right)z\text{ hay }1\ge4\left(x+y\right)z\left(1\right)\) (vì x + y + z = 1)
\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4\left(x+y\right)^2\frac{z}{xyz}\left(\text{Nhân hai vế (1) với: }\frac{\left(x+y\right)}{xyz}\right)\)
\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4.\frac{4xyz}{xyz}=16\left(\text{vì: }\left(x+y\right)^2\ge4xy\right)\)
\(\Rightarrow MIN_A=16\Leftrightarrow x=y;x+y=z;x+y+z=1\)
\(\Rightarrow x=y=\frac{1}{4};z=\frac{1}{2}\)