Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
yenngoc

Cho x,y,z >0; x+y+z=1 .tìm giá trị nhỏ nhất của M=(x+y)/xyz

Seu Vuon
4 tháng 5 2015 lúc 18:40

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)

hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)

Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)

Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

vô danh
7 tháng 5 2015 lúc 17:19

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z

hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)

Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)

Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ‍≥16

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

KAl(SO4)2·12H2O
16 tháng 5 2018 lúc 22:34

Áp dụng (a + b)> 4, ta có:

\(\left(x+y+z\right)^2\ge4\left(x+y\right)z\text{ hay }1\ge4\left(x+y\right)z\left(1\right)\) (vì x + y + z = 1) 

\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4\left(x+y\right)^2\frac{z}{xyz}\left(\text{Nhân hai vế (1) với: }\frac{\left(x+y\right)}{xyz}\right)\)

\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4.\frac{4xyz}{xyz}=16\left(\text{vì: }\left(x+y\right)^2\ge4xy\right)\)

\(\Rightarrow MIN_A=16\Leftrightarrow x=y;x+y=z;x+y+z=1\)

\(\Rightarrow x=y=\frac{1}{4};z=\frac{1}{2}\)


Các câu hỏi tương tự
sieunhansilicon
Xem chi tiết
bui thai hoc
Xem chi tiết
Pham Thi Thoan
Xem chi tiết
Blue Moon
Xem chi tiết
Quách Thị Diệp Chi
Xem chi tiết
Trung Nguyen
Xem chi tiết
Nguyễn Quang Huy
Xem chi tiết
Nguyễn Vân Hương
Xem chi tiết
dinh huong
Xem chi tiết