Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bá Minh

Cho x,y,z >=0 và x+y+z=3 Tìm GTNN của A=\(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+z^2}\)

Thắng Nguyễn
29 tháng 7 2017 lúc 17:47

Ta có: \(\sqrt{x^2+xy+y^2}=\sqrt{x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}}=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}\)

Tương tự ta viết lại A và áp dụng BĐT Mipcopxki :

\(A=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(z+\frac{x}{2}\right)^2+\frac{3x^2}{4}}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\left(x+y+z\right)}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\cdot3}{2}\right)^2+\left(\frac{\sqrt{3}\cdot3}{2}\right)^2}=\sqrt{27}\)

Xảy ra khi x=y=z=1


Các câu hỏi tương tự
Karin Korano
Xem chi tiết
Phan Văn Hiếu
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Trúc Mai Huỳnh
Xem chi tiết
Inuyasha
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
Nhái Channel
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
Nguyễn Võ Tâm Đan
Xem chi tiết