a, x^4 - 5x^2 + 4
= x^4 - 4x^2- x+ 4
= x^2 . (x^2 - 4) - (x^2 - 4)
= (x^2 - 4) . (x^2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)
a, x^4 - 5x^2 + 4
= x^4 - 4x^2- x+ 4
= x^2 . (x^2 - 4) - (x^2 - 4)
= (x^2 - 4) . (x^2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)
cho x+y+z=a
x2+y2+z2=b
\(\dfrac{1}{\text{x
}}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\)
Tính xy+yz+xz, x3+y3+z3
Cho các số thực x, y , z thỏa mãn 2 điều kiện :
a) (x + y) ( y + z)( z + x) = xyz
b) (x3 + y3 ) (y3 + z3) ( x3 + z3) = x3y3z3
CMR: xyz =0
Cho xyz = 1 và x+y+z = 1/x+1/y+1/z = 0
Tính giá trị M = (x6+y6+z6)/(x3+y3+z3)
Phân tích đa thức thành nhân tử:(x-y)z3 + (y-z)x3+ (z-x)y3
Phân tích đa thức thành nhân tử:(x-y)z3 + (y-z)x3+ (z-x)y3
cho x+y+z=2 và x3+y3+z3-3xyz=0. CMR:x=y=z
phân tích đa thức thành nhân tử
c) ( x + y + z)3 - x3 - y3 - z3
phân tích đa thức thành nhân tử
( x + y - z)3 - x3 - y3 + z3
Rút gọn biểu thức: M = x 3 + y 3 + z 3 - 3 x y z x 2 + y 2 + z 2 - x y - y z - x z
Cho x,y,z>=-1 và x3 +y3 +z3 =0.Chứng minh rằng x+y+z<1