( x + y + z)3 - x3 - y3 - z3=x3+y3+z3+3(a+b)(a+c)(b+c)- x3 - y3 - z3
= 3(a+b)(b+c)(a+c)
( x + y + z)3 - x3 - y3 - z3=x3+y3+z3+3(a+b)(a+c)(b+c)- x3 - y3 - z3
= 3(a+b)(b+c)(a+c)
phân tích đa thức thành nhân tử
( x + y - z)3 - x3 - y3 + z3
Phân tích đa thức thành nhân tử:(x-y)z3 + (y-z)x3+ (z-x)y3
Phân tích đa thức thành nhân tử:(x-y)z3 + (y-z)x3+ (z-x)y3
phân tích đa thức thành nhân tử
a,A=x3+y3+z3-3xyz
b,B=(x+y)3+(y-z)3+(z-x)3
c,C=(x2+x+1) (x2+x+2)-12
d,D=bc(b+c)+ac(c-a)-ab(a+b)
a) Chứng minh nếu x + y + z = 0 thì x 3 + y 3 + z 3 = 3xyz.
b) Áp dụng. Phân tích các đa thức sau thành nhân tử:
P = ( a 2 + b 2 ) 3 + ( c 2 - a 2 ) 3 - ( b 2 + c 2 ) 3 .
Phân tích đa thức thành nhân tử:
a) ( 3 x + l ) 2 - ( 3 x - l ) 2 ; b) ( x + y ) 2 - ( x - y ) 2 ;
c) ( x + y ) 3 - ( x - y ) 3 ; d) x 3 + y 3 + z 3 - 3xyz.
Phân tích đa thức thành nhân tử: x + y + z 3 - z 3 - y 3 - z 3
a) Phân tích đa thức sau thành nhân tử: .x3+z3+y3-3xyz
b) Cho 3 số a, b, c thỏa mãn a+b+c khác 0 . Chứng minh rằng :.x3+z3+y3-3xyz/a+b+c lớn hơn hoặc bằng 0
Phân tích các đa thức sau thành nhân tử:
a) ( 4 t + 2 ) 3 + 8 ( 1 - 2 t ) 3 ; b) x 3 + y 3 - z 3 +3xyz.