Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Nhật

Cho x>y>0.Tìm giá trị nhỏ nhất của biểu thức \(A=x^2+\dfrac{x+y}{y\left(x^2-y^2\right)}\)

 

Akai Haruma
24 tháng 12 2021 lúc 8:19

Lời giải:

Ta có: $A=x^2+\frac{1}{y(x-y)}$. Đặt $x-y=a$ với $a>0$ thì áp dụng BĐT AM-GM ta có:

$A=(a+y)^2+\frac{1}{ay}\geq 4ay+\frac{1}{ay}\geq 2\sqrt{4ay.\frac{1}{ay}}=4$

Vậy $A_{\min}=4$ khi $x=\sqrt{2}; y=\frac{1}{\sqrt{2}}$


Các câu hỏi tương tự
hong nguyen
Xem chi tiết
Nguyễn Thị Huế
Xem chi tiết
Yuki Linh Lê
Xem chi tiết
Nguyễn Như Ý
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết