Lời giải:
ĐK: \(x,y\geq 1\)
PT \(\Leftrightarrow (\sqrt{x^2+5}-\sqrt{y^2+5})+(\sqrt{x-1}-\sqrt{y-1})+(x^2-y^2)=0\)
\(\Leftrightarrow \frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+(x^2-y^2)=0\)
\(\Leftrightarrow (x-y)\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
Với mọi \(x,y\geq 1\) dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$
Do đó: \(x-y=0\Leftrightarrow x=y\) (dpcm)
cho biết R1=5 ôm; U2=3,5 vôn ;IAB=0,5.Tính điện trở tương đương của đoạn mạch?