áp dụng bất đẳng thức cauchy - schawarz:
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Rightarrow\left(x^2+y^2\right)\ge\frac{\left(\sqrt{10}\right)^2}{2}=5\)
dấu "=" xảy ra khi \(x=y=\frac{\sqrt{10}}{2}\)
áp dụng bất đẳng thức cauchy - schawarz:
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Rightarrow\left(x^2+y^2\right)\ge\frac{\left(\sqrt{10}\right)^2}{2}=5\)
dấu "=" xảy ra khi \(x=y=\frac{\sqrt{10}}{2}\)
Cho x;y;z > 0 thỏa mãn x + y + z = 2
Tìm GTNN của \(P=\sqrt{4x^2+\frac{1}{x^2}}+\sqrt{4y^2+\frac{1}{y^2}}+\sqrt{4z^2+\frac{1}{z^2}}\)
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
a) Cho x;y dương thỏa mãn xy=1. Tìm GTNN: D= x2+3x+y2+3y+\(\frac{9}{x^2+y^2+1}\)
b) Với \(1\le x\le\frac{4\sqrt{3}}{3}\)Tìm GTLN của y=\(8\sqrt{x-1}+x\sqrt{16-3x^2}\)
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
a) Cho x+y=1. Tìm giá trị nhỏ nhất của biểu thức x3+y3
b) Cho 3 số dương x, y, z thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức: P=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
Cho các số thực x,y,z thỏa mãn x+y+z=5 và xy+yz+zx=8. Tìm GTLN,GTNN của x,y,z
\(a)\) Cho 3 số không âm x, y, z thỏa mãn: \(x^2+y^2+z^2=1\).
Tìm giá trị nhỏ nhất của biểu thức: \(M=x+y+z-3\)
\(b)\)Cho 2 số dương x, y thỏa mãn: \((\sqrt{x}+1)(\sqrt{y}+1)\ge4\).
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{x^2}{y}+\frac{y^2}{x}\)
Cho các số thực dương x, y, z thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm giá trị nhỏ nhất của biểu thức:\(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)