TÌM các số nguyên x,y thỏa mãn:
\(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=2020^{y-2021}\)
Tìm các số nguyên x,y thỏa mãn
(x-2019)\(^{2020}\)+\(\left(x-2020\right)^{2020}=2020^{y-2021}\)
Cho x , y , z đồng thời thỏa mãn x + y + z = 1 ; x^2 + y^2 + z^2 = 1 ; x^3 + y^3 + z^3 = 1
Tính x^2021 + y^2021 + z^2021
Cho x , y , z đồng thời thỏa mãn x + y + z = 1 ; x^2 + y^2 + z^2 = 1 ; x^3 + y^3 + z^3 = 1
Tính x^2021 + y^2021 + z^2021
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
cho A là một tập hợp gồm 607 số nguyên dương đôi một khác nhau và mỗi số nhỏ hơn 2021. Chứng minh rằng trong tập hợp A luôn tìm được hai phần tử x,y (x>y) thỏa mãn x-y ϵ \(\left\{3,6,9\right\}\)
\(P=\left(x-\frac{2}{7}\right)^{2018}+\left(0,2-\frac{1}{5}y\right)^{2019}+2021\)
Cho hàm số \(y=f\left(x\right)=1-\left|x\right|\)
a, Tính \(f\left(-5\right);f\left(\frac{-1}{2}\right);2\left(3\right)-\left(3f\left(1\right)-2f\left(3\right)\right):f\left(5\right)\)
b, Tính \(A=y_1+y_2+y_3+...+y_{2021}\)biết y1=1, y2=f(y1), yn+1=f(yn) với n là số nguyên dương