\(\frac{1}{x}+\frac{1}{y}=1\Rightarrow x+y=xy\)
\(\left(\sqrt{x-1}+\sqrt{y-1}\right)^2=x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}\)
\(=x+y-2+2\sqrt{xy-x-y+1}=x+y\)
+.diều phải chung minh
\(\frac{1}{x}+\frac{1}{y}=1\Rightarrow x+y=xy\)
\(\left(\sqrt{x-1}+\sqrt{y-1}\right)^2=x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}\)
\(=x+y-2+2\sqrt{xy-x-y+1}=x+y\)
+.diều phải chung minh
cho x,y,z,t là các số dương và \(\sqrt{x}\)+\(\sqrt{y}\)+\(\sqrt{z}\)+\(\sqrt{t}\)=4
chứng minh rằng: \(\dfrac{\sqrt{x}}{1+y}\)+\(\dfrac{\sqrt{y}}{1+z}\)+\(\dfrac{\sqrt{z}}{1+t}\)+\(\dfrac{\sqrt{t}}{1+x}\)\(\ge\)2
Cho x,y là các số thực dương thỏa mãn: (x+\(\sqrt{x^2+1}\))(y+\(\sqrt{y^2+1}\))=2
Tính Q= \(x\sqrt{y^2+1}\)+y\(\sqrt{x^2+1}\)
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{1}{\sqrt{x}+3\sqrt{y}}+\frac{1}{\sqrt{y}+3\sqrt{z}}+\frac{1}{\sqrt{z}+3\sqrt{x}}\ge\frac{1}{\sqrt{x}+2\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{y}+2\sqrt{z}+\sqrt{x}}+\frac{1}{\sqrt{z}+2\sqrt{x}+\sqrt{y}}\)
cho các số thực dương x,y,z thỏa mãn x + y + z = 3 . chứng minh rằng: 1/(sqrt(xy + x + y)) + 1/(sqrt(yz + y + z)) + 1/(sqrt(zx + z + x)) >= sqrt(3)
Cho x, y, z là 3 số thực dương và x + y + z ≤ 1. CMR:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{82}\)
Cho các số dương x,y,z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{z}=\dfrac{1}{x+y-z}=\dfrac{2020}{2021}\)
Tính giá trị biểu thức \(M=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}+\dfrac{1}{\sqrt{x+y-z}}\)
Tìm x,y biết: y=\(\sqrt[3]{9+\sqrt{x-1}}+\sqrt[3]{9-\sqrt{x-1}}\)
x,y nguyên dương.
x, y, z, t là các số dương và \(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{t}=4\). chứng minh rằng: \(\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+z}+\frac{\sqrt{z}}{1+t}+\frac{\sqrt{t}}{1+x}\ge2\)
Cho 3 số dương x,y,z. CMR:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
>= \(3\left(\frac{1}{\sqrt{x}+2\sqrt{y}}+\frac{1}{\sqrt{y}+2\sqrt{z}}+\frac{1}{\sqrt{z}+2\sqrt{x}}\right)\)