\(8x^2+16x^2y+16xy^2+8y^2-5x-5y+2018\)
\(=8\left(x^2+y^2\right)+16xy\left(x+y\right)-5\left(x+y\right)+2018\)
\(=8\left[\left(x+y\right)^2-2xy\right]+16xy\left(x+y\right)-5\left(x+y\right)+2018\)
\(=8\left(x+y\right)^2-16xy+16xy\left(x+y\right)-5\left(x+y\right)+2018\)
\(=8\left(x+y\right)^2-16xy\left[1-\left(x+y\right)\right]-5\left(x+y\right)+2018\)
\(=8.1^2-16xy\left(1-1\right)-5.1+2018\)
\(=8-0-5+2018\)
\(=2021\)
!!!Chúc học tốt!!!