(x2 y - y2 x) + (x2 z - xyz) + (z2 y - z2 x) + (y2 z - xyz) = (x-y)(xy+zx-z2 -yz)=(x-y)(x-z)(y+z)=0
Giải giùm rồi đấy bạn
(x2 y - y2 x) + (x2 z - xyz) + (z2 y - z2 x) + (y2 z - xyz) = (x-y)(xy+zx-z2 -yz)=(x-y)(x-z)(y+z)=0
Giải giùm rồi đấy bạn
Cho \(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\)
Chứng minh rằng trong 3 số \(x;y;z\)ít nhất cũng có 2 số bằng nhau hoặc đối nhau.
Cho \(x^2y-xy^2+x^2z-xz^2+y^2z+yz^2=2xyz\). CMR: trong 3 số \(x,y,z\) có ít nhất hai số bằng nhau hoặc đối nhau.
x2y - y2x+x2z - z2x +y2z +z2y - 2xyz = 0
chứng minh rằng trong ba số x, y, z ít nhất cũng có hai số bằng nhau hoặc đối nhau
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
Cho x2y-y2x+x2z-z2x+y2z+z2y=2xyz
CMR:Trong ba số x,y,z ít nhất cũng có hai số bằng nhau hoặc đối nhau
giúp mình nha
Cho các số dương x;y;z thỏa mãn \(xyz=1\) . Chứng minh rằng :
\(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}+\frac{y^2z^2}{2y^2+z^2+3y^2z^2}+\frac{x^2z^2}{2z^2+x^2+3z^2x^2}\le\frac{1}{2}\)
cho các số dương x , y , z thỏa mãn 1/x + 1/y + 1/z = 4
chứng minh 1/(2x+y+z) + 1/(x+2y+z) + 1/ (x+y+2z) < hoặc = 1
chứng minh rằng
a) (x-y)+(y-z)+(z-x)= (y+z-2x)+(z+x-2y)+(x+y-2z) thì x=y=z
Chứng minh rằng:
Nếu x;y;z thỏa mãn
x2y-y2x+x2z-z2x+y2z+z2y=2xyz
thì ít nhất có 2 số bằng nhau hoặc đối nhau