Ta có:\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=x^2+xy+y^2=\left(x-y\right)^2+3xy=1+3xy\)
Ta có:\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=x^2+xy+y^2=\left(x-y\right)^2+3xy=1+3xy\)
cho x+y=1 va xy khac 0 cmr x/(y3-1)-y/(x3-1)+2(x-y)/(x2y2+3)=0
Bài 4:
a) Cho x+y=1.Tính x3+y3+3xy
b) Cho x-y=1.Tính x3-y3-3xy
c) Cho x+y=1.Tính x3+y3+3xy(x2+y2)+6x2y2(x+y)
giúp mình với ,gấpppppppppppp
1,phân tích mỗi đa thức sau thành phân tử
a,(x+2y)2-(x-y)2
b,(x+1)3+(x-1)3
c,9x2-3x+2y-4y2
d,4x2-4xy+2x-y+y2
e,x3+3x2+3x+1-y3
g,x3-2x2y+xy2-4x
a) Cho x + y = 1. Tính giá trị biểu thức A = x3 + y3 +3xy
b) Cho x - y = 1. Tính giá trị biểu thức B = x3 - y3 -3xy
Cho các số thực x, y , z thỏa mãn 2 điều kiện :
a) (x + y) ( y + z)( z + x) = xyz
b) (x3 + y3 ) (y3 + z3) ( x3 + z3) = x3y3z3
CMR: xyz =0
Viết các đa thức sau thành lập phương của 1 tổng hoặc 1 hiệu.
a) x3-3x2+3x-1
b) -8x3+12x2-6x+1
c)x3-3xy(x-y)-y3
Bài 3: Phân tích đa thức sau thành nhân tử.
a) x4 + 2x2 + 1
b) 4x2 - 12xy + 9y2
c) -x2 - 2xy - y2
d) (x + y)2 - 2(x + y) + 1
e) x3 - 3x2 + 3x - 1
g) x3 + 6x2 + 12x + 8
h) x3 + 1 - x2 - x
k) (x + y)3 - x3 - y3
Bài 1: rút gọn biểu thức
a) (3x+4y-5z) (3x-4y+5z)
b) (3a-1)2+2 (92-1)+(3a+1)2
Bài 2:chứng minh rằng
(x+y+z)3=x3+y3+z3+3(x+y) (y+z) (z+x)
cho x,y,z >0;xyz=1.Chứng minh rằng x3/(y+1)(z+1)+y3/(z+1)(x+1)+x3/(y+1)(z+1)≥3/4
CM với mọi x,y ta luôn có: (xy+1)(x2y2-xy+1)+(x3-1)(1-y3)=x3+y3