- Nếu \(x,y,z\)đôi một không cùng số dư khi chia hết cho \(3\), khi đó giả sử \(x\equiv0\left(mod3\right),y\equiv1\left(mod3\right),z\equiv2\left(mod3\right)\).
Ta có: \(VP\equiv0+1+2\equiv0\left(mod3\right)\)
\(VT\)không có thừa số nào chia hết cho \(3\)nên \(VT⋮̸3\)do đó mâu thuẫn.
- Nếu có hai trong ba số \(x,y,z\)có cùng số dư khi chia cho \(3\).
Khi đó \(VT\)chia hết cho \(3\).
\(VP\)không chia hết cho \(3\)(mâu thuẫn).
Do đó cả \(3\)số \(x,y,z\)có cùng số dư khi chia cho \(3\).
Vậy \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮\left(3.3.3\right)\)
hay ta có đpcm.
Một số nguyên chia cho 3 có số dư là 0,1 hoặc 2
- Nếu x,y,z chia cho 3 có số dư khác nhau
\(\Rightarrow x-y⋮̸3;y-z⋮̸3;z-x⋮̸3\)còn \(x+y+z⋮3\)
Do đó \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\)không xảy ra
- Nếu x,y,z chỉ có hai số chia cho 3 có cùng số dư
Không mất tính tổng quát,giả sử là x và y ta có :
\(x-y⋮3,x+y+z⋮̸3\)
Do đó \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\)cũng không xảy ra
Do đó x,y,z chia cho 3 có cùng số dư
\(\Rightarrow x-y⋮3;y-z⋮3;z-x⋮3\)
\(\Rightarrowđpcm\)