Áp dụng BĐT cô-si cho 2 số dương ta có:
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(x+z\ge2\sqrt{xz}\)
=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu"=" xảy ra <=>x=y y=z z=x=>x=y=z
=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Leftrightarrow x=y=z\)(ĐPCM)
Áp dụng BĐT Cauchy cho 2 số không âm, ta được:
\(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow x+y\ge2\sqrt{xy}\)
\(\frac{y+z}{2}\ge\sqrt{yz}\Rightarrow y+z\ge2\sqrt{yz}\)
\(\frac{x+z}{2}\ge\sqrt{xz}\Rightarrow x+z\ge2\sqrt{xz}\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)(Vì x,y,z > 0)