Cho các số thực dương x, y, z thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm giá trị nhỏ nhất của biểu thức:\(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho các số thực dương x, y ,z thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm giá trị nhỏ nhất của biểu thức: \(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x, y dương, z khác 0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\).
CMR: \(\sqrt{x+y}=\sqrt{x+z}+\sqrt{y+z}\).
Ai giúp tớ với ạ~
Tìm x, y, z thỏa mãn phongw trình:
\(x+y+z-2009=2\sqrt{x-19}+4\sqrt{y-7}+6\sqrt{z-1997}\)
cho x, y, z là các sốdương thỏa mãn điều kiện \(x+y+z\ge12\)
tìm giá trị nhỏ nhất của biểu thức \(P=\frac{x}{\sqrt{y}}.\frac{y}{\sqrt{z}}.\frac{x}{\sqrt{z}}\)
Cho x;y;z > 0 thỏa mãn x + y + z = 2
Tìm GTNN của \(P=\sqrt{4x^2+\frac{1}{x^2}}+\sqrt{4y^2+\frac{1}{y^2}}+\sqrt{4z^2+\frac{1}{z^2}}\)
Cho các số thực dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
CMR :
\(\sqrt{\frac{xy}{x+y+2x}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{zx}{z+x+2y}}\le\frac{1}{2}\)
\(a)\) Cho 3 số không âm x, y, z thỏa mãn: \(x^2+y^2+z^2=1\).
Tìm giá trị nhỏ nhất của biểu thức: \(M=x+y+z-3\)
\(b)\)Cho 2 số dương x, y thỏa mãn: \((\sqrt{x}+1)(\sqrt{y}+1)\ge4\).
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{x^2}{y}+\frac{y^2}{x}\)
Cho x , y , z dương thay đổi thõa mãn x + y +z = 3 . Tìm giá trị nhỏ nhất của \(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\) .