Ta có: x2+2xy+4x+4y+3y2+3=0
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+2y^2+3=0\)
\(\Leftrightarrow[\left(x+y\right)^2+4\left(x+y\right)+4]+2y^2=1\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(y^2\ge0\Rightarrow1-2y^2\le1\)
\(\Rightarrow B^2=\left(x+y+2\right)^2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}B\le1\\B\ge-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B_{max}=1\\B_{min}=-1\end{matrix}\right.\)
\(x^2+2xy+4x+4x+3y^2+3=0\\ \Leftrightarrow\left(x+y\right)^2+2.\left(x+y\right).2+4=1-2y^2\\ \Leftrightarrow\left(x+y+2\right)^2=1-2y^2\le1\\ \Rightarrow\left(x+y+2\right)^2\le1\)
\(\Rightarrow-1\le x+y+2\le1\\ \)