\(x+y+2=4xy\Rightarrow x+y+2\le\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)-2\ge0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+y+1\right)\ge0\)
\(\Leftrightarrow x+y-2\ge0\) (do x+y+1>0 với mọi x,y>0)
\(\Leftrightarrow x+y\ge2\)
Có \(x+y+\dfrac{1}{x+y}=\left(x+y\right)+\dfrac{4}{x+y}-\dfrac{3}{x+y}\)\(\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}-\dfrac{3}{2}=\dfrac{5}{2}\)
Dấu = xảy ra <=> x=y=1
Vậy GTNN của biểu thức là \(\dfrac{5}{2}\)