Lê Minh Đức

Cho \(x_1,x_2,...,x_n\) thỏa mãn: \(\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_n}=1\).

Chứng minh rằng: \(x_1x_2...x_n\ge\left(n-1\right)^n\)

Lầy Văn Lội
10 tháng 7 2017 lúc 11:32

AM-GM thôi :))

từ giả thiết :\(\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-1}}=\frac{x_n}{1+x_n}\)

Áp dụng BĐT AM-GM: \(\frac{x_n}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_{n-1}\right)}}\)

từ giả thiết ta cũng có: \(\frac{x_{n-1}}{1+x_{n-1}}=\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-2}}+\frac{1}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_{n-2}\right)\left(1+x_n\right)}}\)

cứ như thế,chuyễn 1 hạng tử từ vế trái sang vế phải, ta được n bất đẳng thức 

Nhân chúng lại với nhau: \(\frac{x_1.x_2...x_n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\ge\frac{\left(n-1\right)^n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\)

do đó \(x_1.x_2.x_3...x_n\ge\left(n-1\right)^n\)

P/s: Nếu thắc mắc vì sao nó hết căn,để ý rằng nhân tử \(x_n\)xuất hiện (n-1) lần , nó chỉ không xuất hiện ở BĐT thứ 2 ở trên . căn (n-1) ắt sẽ hết 

Bình luận (0)

Các câu hỏi tương tự
Incursion_03
Xem chi tiết
Lê Minh Đức
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Trần Thùy
Xem chi tiết
Hùng Hoàng
Xem chi tiết
Nguyễn Hoàng Liên
Xem chi tiết
Hoàng Phúc
Xem chi tiết
lê thị thủy
Xem chi tiết