Một tập hợp các số nguyên dương được gọi là tập hương nếu tập hợp đó có ít nhất 2 phần tử và mỗi phần tử của nó đều có ước nguyên tố chung với ít nhất một trong các phần tử còn lại . Đặt P(n)=n2+n+1. Hãy tìm số nguyên dương b nhỏ nhất sao cho tồn tại số không âm a để tập hợp {P(a+1);P(a+2);...;P(a+b)} là tập hương.
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kỳ lớn hơn tổng 10 phần tử còn lại . biết các số 101 và 102 thuộc A , tìm tất cả các phần tử của A
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kỳ lớn hơn tổng 10 phần tử còn lại . biết các số 101 và 102 thuộc A , tìm tất cả các phần tử của A
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kỳ lớn hơn tổng 10 phần tử còn lại . biết các số 101 và 102 thuộc A , tìm tất cả các phần tử của A
ho dãy số: -127;1038;-15;0;130;29;61;|-35|
Tổng của số nhỏ nhất và lớn nhất của dãy số trên là
Câu 2:
Tìm tổng của tất cả các số nguyên x thỏa mãn:
Trả lời:Tổng là
Câu 3:
Tìm thỏa mãn:
Trả lời:
Câu 4:
Cho M là trung điểm đoạn AB.Biết đoạn AB=8cm.Độ dài đoạn MB là cm.
Câu 5:
Tích của 4 số tự nhiên liên tiếp là 93024.Số lớn nhất trong 4 số đó là
Câu 6:
Cho tập hợp A là tập hợp các số tự nhiên chẵn lớn hơn 20 và không lớn hơn 30,B là tập hợp các số tự nhiên lớn hơn 26 và nhỏ hơn 33.Số phần tửcủa tập hợp C thuộc tập hợp B mà không thuộc tập hợp A là
Câu 7:
Tìm thỏa mãn:
Trả lời:
Câu 8:
Tập hợp các số tự nhiên có hai chữ số mà tổng các chữ số của mỗi số đó bằng 5có số phần tử là
Câu 9:
Hai lớp 6A; 6B cùng thu nhặt một số giấy vụn bằng nhau.Lớp 6A có 1 bạn thu được 26kg còn lại mỗi bạn thu được 11 kg ; Lớp 6B có 1 bạn thu được 25 kg còn lại mỗi bạn thu được 10kg . Tính số học sinh lớp 6B biết rằng số giấy mỗi lớp thu được trong khoảng 200kg đến 300kg.
Trả lời: Số học sinh lớp 6B là học sinh.
Câu 10:
Tập hợp tất cả các số ,biết rằng B chia hết cho 99 là S = {}
(Nhập các giá trị theo thứ tự tăng dần,ngăn cách nhau bởi dấu ";" )
Cho S là một tập các số nguyên sao cho :
a) Tồn tại a,b thuộc S với gcd(a,b) = gcd(a-2,b-2) = 1
b) Nếu x,y là hai phần tử của S( có thể bằng nhau ) thì x2 - y cũng thuộc S
CMR S là tập tất cả các số nguyên
Cho tập hợp A gồm 21 phần tử là các số nguyên khác nhau thỏa mãn tổng của 11 phần tử bất kì lớn hơn tổng của 10 phần tử còn lại Biết các số 101,102 thuộc A. Tìm các phần tử của A.
Cho tập hợp X có n phần tử (n≥1). Hãy tìm số các cặp hai tập hợp con khác nhau của X không giao nhau.
em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-
có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])
có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:
mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số phần tử tương ứng có trong K và mod).
có tập hợp dãy số nguyên int (int[1], int[2], int[3], ..., int[n]) với mỗi phần tử trong tập hợp int đc tính theo công thức:
mod[i] = k[i] / x ( / là phép toán chia lấy phần nguyên, i là chỉ số phần tử tương ứng có trong K và int).
smod là tổng của các phần tử có trong tập hợp mod ( smod = mod[1] + mod[2] + mod[3] + ... + mod[n] )
sint là à tổng của các phần tử có trong tập hợp int (sint = int[1] + int[2] + int[3] + ... + int[n])
T đc tính theo công thức sau : \(T = smod - sint - 12 * n\) (n là số phần tử của K như ở trên).
Ví dụ: có x = 922, tập hợp K có : K[1] = 3572 , K[2] = 3427 , K[3] = 7312 thì ta có:
mod[1] = 806, mod[2] = 661, mod[3] = 858
int[1] = 3, int[2] = 3, int[3] = 7
từ đó có smod = 2325 và sint = 13
K có 3 phần tử nên n = 3, từ đó có T =
T = 2325 - 13 - 12*3 = 2276
Giờ em đã có T và tập hợp K, tức là đã biết T và K[1], K[2], K[3], ..., K[n], lập công thức tính x
Em phải làm thế nào ạ ?