1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
. Cho các số thực x,y thỏa mãn 0<x<1, 0<y<1 Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}\)
Chứng minh rằng: A = \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)không phụ thuộc vào x;y với x > 0 và y > 0
Các bạn lm chi tiết giúp mk nhé!
Cho x,y thỏa mãn x,y thuộc R và 0\(\le x,y\le\dfrac{1}{2}\) chứng minh rằng \(\dfrac{\sqrt{x}}{1+y}+\dfrac{\sqrt{y}}{1+x}\le\dfrac{2\sqrt{2}}{3}\)
1/ Cho $$( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
Cho các số thực x, y thỏa mãn -4 ≤ x ≤ 4; 0 ≤ y ≤ 16. Chứng minh rằng: \(x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\) ≤ 16
Cho x, y là các số thực thỏa mãn 0<x, y<1.
Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}.\)
Cho x, y, z \(>0\)và thỏa mãn: x + y + z = xyz. Chứng minh rằng: \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Cho \(x,y,z>0\)và \(x+y+z=3\). Chứng minh rằng \(\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{y}}-\frac{1}{2\sqrt{z}}< \frac{1}{\sqrt{xyz}}\)