a: Xét ΔMEA vuông tại E và ΔMFC vuông tại F có
MA=MC
góc AME=góc CMF
=>ΔMEA=ΔMFC
=>ME=MF
b: BE+BF
=BE+BE+EF
=BE+BE+2*ME
=2*BE+2*ME
=2*BM
c: ΔAMB vuông tại A
=>AB<BM
a: Xét ΔMEA vuông tại E và ΔMFC vuông tại F có
MA=MC
góc AME=góc CMF
=>ΔMEA=ΔMFC
=>ME=MF
b: BE+BF
=BE+BE+EF
=BE+BE+2*ME
=2*BE+2*ME
=2*BM
c: ΔAMB vuông tại A
=>AB<BM
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng AB < (BE + BF) / 2 .
Cho vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng:
a) ME = MF
b) BE + BF = 2MB
c) AB < BM
d) AB < (BE+BF):2
Cho tam giác ABC vuông tại A, M là trung điểm AC. Gọi E,F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh AB<(BE+BF)/2
BTVN:
Bài 1. Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM.
a) Chứng minh ∆AME = ∆CMF
b) Chứng minh rằng AB < \(\dfrac{BE+BF}{2}\)
cho tam giác abc vuông tại a, m là trung điểm của ac. gọi e,f là chân đường vuông góc kẻ từ a và c đến bm. cm: a)me=mf; so sánh ab và (be+bf)/2
Cho tam giác ABC vuông tại A . M là trung điểm của AC . Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và C đến BM . Chứng miinh rằng AB < BE+BF/2
cho tam giác ABC vuông tại A. Đường trung tuyến BM. Gọi E,F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng:
a) ME= MF
b)AB < BE+BF/2
Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh: AB < \(\frac{BE+BF}{2}\)
Ai giúp mik bài này vs !!
1 ) Cho tam giác ABC , D nằm giữa A và C sao cho BD không vuông góc với AC . Gọi E và F là chân các đường vuông góc vẽ từ A và C đến đường thẳng BD . So sánh AD với tổng AE + CF
2 ) Cho tam giác ABC vuông tại A , M là trung điểm của AC . Gọi E và F là chân các đường vuông góc vẽ từ A và C đến đường thẳng BM . Chứng minh rằng : AB < BE + BF / 2