a: Xét ΔABD có AE/AB=AH/AD=1/2
nên EH//BD và EH=1/2BD
Xét ΔCBD có
CF/CB=CG/CD
nên FG//BD và FG=BD/2
=>EH//FG và EH=GF
=>EHGF là hình bình hành
b: Tâm đối xứng là trung điểm của EG
=>giao của EG và FH
a: Xét ΔABD có AE/AB=AH/AD=1/2
nên EH//BD và EH=1/2BD
Xét ΔCBD có
CF/CB=CG/CD
nên FG//BD và FG=BD/2
=>EH//FG và EH=GF
=>EHGF là hình bình hành
b: Tâm đối xứng là trung điểm của EG
=>giao của EG và FH
Cho tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. a) Chứng minh tứ giác EFGH là hình bình hành. b) Cho AC= 6cm; BD=8cm. Tính độ dài các cạnh của hình bình hành EFGH. 2 Giải giúp mình với
Cho tứ giác ABCD và các điểm E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA.
a. Chứng minh rằng tứ giác EFGH là hình bình hành
b. Hai đường chéo của tứ giác ABCD phải có điều kiện gi thì EFGH là hình thoi, hình chữ nhật, hình vuông.
Giải giùm mình với mình đang cần gấp
cho hình bình hành ABCD. gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a/ CM tứ giác EFGH là hình bình hành.
b/ Khi hình bình hành ABCD là hình chữ nhật, hình thoi thì EFGH là hình gì? Chứng minh.
Cho tứ giác ABCD có AB = AD và DB là đường phân giác của góc D
a) Chứng minh góc ABD = góc BDC
b) ABCD là hình gì? Vì sao?
c) Gọi E; F; G; H theo thứ tự là trung điểm của các cạnh AB; BC; CD; DA
Cm tứ giác EFGH là Hình bình hành
Help me !!!
Cho hình bình hành ABCD. Gọi P, Q, R, S lần lượt là trung điểm của các cạnh CD, DA, AB, BC. Đoạn DR cắt CQ, CA, SA theo thứ tự tại H, I, G. Đoạn BP cắt SA, AC, CQ theo thứ tự tại F, J, E. Chứng minh:
a) Tứ giác EFGH là hình bình hành;
b)AI = IJ = JC;
c) S E F G H = 1 5 S A B C D
1) Cho tứ giác ABCD . Gọi E , F , G , H theo thứ tự là trung điểm của BD , AB , AC , CD
a) Chứng minh rằng EFGH là hình bình hành
b) Cho AD = a , BC = b . Tính chu vi hình bình hành EFGH
1) Cho tứ giác ABCD . Gọi E , F , G , H theo thứ tự là trung điểm của BD , AB , AC , CD
a) Chứng minh rằng EFGH là hình bình hành
b) Cho AD = a , BC = b . Tính chu vi hình bình hành EFGH
1) Cho tứ giác ABCD . Gọi E , F , G , H theo thứ tự là trung điểm của BD , AB , AC , CD
a) Chứng minh rằng EFGH là hình bình hành
b) Cho AD = a , BC = b . Tính chu vi hình bình hành EFGH
cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm BD,AB,AC,CD
A) chứng minh EFGH là hình bình hành
b) cho AD=a, BC=b. Tính chu vi hình bình hành EFGH
Cho hình bình hành ABCD. Gọi P, Q, R, S lần lượt là trung điểm của các cạnh CD, DA, AB, BC. Đoạn DR cắt CQ, CA, SA theo thứ tự tại H, I, G. Đoạn BP cắt SA, AC, CQ theo thứ tự tại F, J, E. Chứng minh:
a) Tứ giác EFGH là hình bình hành;
b)AI = IJ = JC;
c) SEFGH=1/5SABCD