cho tứ giá abcd có m là trung điểm ab , n là trung điểm cd, e là trung điểm bc , f là trung điểm ad
a) chứng minh tứ giác menf là hình bình hành
b)gọi p thuộc cạnh BC(pb khác pc) .q thuộc cạnh À(QA khác QD).Biết MPNQ là hình bình hành.Hỏi tứ giác abcd là hình gì ? tại sao
cho từ giác ABCD .M là trung điểm của AB. N là trung điểm của CD.E laf trung điểm của BC .F là trung điểm của AD
a, chứng minh tứ giác MENF là hình bình hành
b, P thuộc cạnh BC(PB khác PC).Q thuộc AD (QÁ khác QĐ) tự giác MPNQ là hình bình hành. hỏi tứ giác ABCD là hing gì vì sao
Cho tứ giác ABCD có M là trung điểm của AB, N là trung điểm của CD, P là điểm trên BC, Q là điểm trên AD (QA khác QD). Biết MPNQ là hình bình hành. Chứng minh: PC song song với AD
Cho tứ giác ABCD có M là trung điểm cạnh BC,N là trung điểm của CD, P là điểm thuộc cạch BC, Q là điểm thuộc cạnh AD,( QA ko thuộc QD). Biết MNPQ là hình bình hành. Cm BC song song vs AD
Cho tứ giác ABCD có M là trung điểm của AB, N là trung điểm của CD, P là điểm trên BC, Q là điểm trên AD (QA khác QD). Biết MPNQ là hình bình hành. Chứng minh: BC song song với AD
5. cho hình bình hành ABCD, có M là trung điểm của AD, N là trung điểm của BC. Chứng minh rằng BM=DN
6. Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB,CD.
a) Chứng minh rằng: Tứ giác DEBF là hình bình hành
b) DE cắt AC tại G, BF cắt AC tại H. Chứng minh: DE = EF = FB
7. Cho hình bình hành ABCD, kẻ AM vuông góc với BD tại H, kẻ CN vuông góc với BD tại k.
a) chứng minh rằng: tứ giác AMCN là hình bình hành
b) Gọi I là trung điểm của MN. Chứng minh rằng: ba điểm A,I,C thẳng hàng
Cho hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để MNPQ là hình chữ nhật, hình thoi, hình vuông?
c) Gọi O là giao điểm của AC,BD.Chứng minh: M,O,P thẳng hàng
d) Chứng minh : AC, BD, QN đồng qui
Cho hình bình hành ABCD .Gọi M,N lần lượt là trung điểm của AB và CD .Gọi E là giao điểm của AN và DM ,F là giao điểm của MC và BN .Chứng minh
a, AD=MN
b, Tứ giác BCNM ,MENF là hình bình hành
c, E,F và trung điểm của MN thẳng hàng
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?
Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :
a) MENF là hình bình hành.
b) Các đường thẳng AC, BD, MN, EF đồng quy.
Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.
Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 6 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 7: Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.