1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
cho tam giác abc có ab=6 bc=10 ac=8
a) chứng tỏ tam giác abc vuông b) gọi i,k,d lần lượt là trung điểm ad, bc (biết ad là trung tuyến) gọi m,n là hình chiếu của d trên ab và ac. chứng minh các tứ giác amdn, dimk, dmik, là hình gì c) chứng minh m và n đối xứng với nhau qua i d) tính ad,ikcho hình chữ nhật ABCD có hai đường chéo BD và AC cắt nhau tại O, lấy điểm P tùy ý trên đường chéo BD. Gọi M là điểm đối xứng nhau với C qua P .
a, Chứng minh AM // BD
b, Gọi E và F lần lượt là hình chiếu của M trên AD và AB . Chứng minh tứ giác AEMF là hình chữ nhật
c, Chứng minh EF//AC
d, Chứng minh 3 điểm F,E,P thẳng hàng
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống AC. Goi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD
a) Tứ giác BEDF là hình gì? Vì sao?
b) Chứng minh răng: \(CH.CD=CB.CK\)
c) Chứng minh rằng : \(AB.AH+AD.AK=AD^2\)
d) Một điểm N trên cạnh CD, gọi M là giao điểm của BN và đường thẳng AD. Chứng minh rằng tích AM.CM có giá trị khong đổi khi N chuyển động trên cạnh CD với AB= a, AD= b
Cho hình vuông ABCD lấy điểm E bất kì trên cạnh AB kẻ đường thẳng song song với AC và đường thẳng song song với AB hai đường thẳng này lần lượt cắt BC và d c tại K và m Chứng minh
a)tứ giác ABCD là hình chữ nhật
b)Chứng minh tứ giác AC là hình thang
c)Gọi O là giao điểm của AC và BD Tìm vị trí của M trên ab để tứ giác AIKO là hình bình hành
1) Cho tam giác ABC có AB < AC. Đường cao AH. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, AC, AB.
a/ chứng minh PN là đường trung trực của AH
b/ chứng minh tứ giác MNPH là hình thang
2) cho hình thang cân ABCD. có AB // CD. I là giao điểm của 2 đường chéo AC và BC. góc AIB = 60 độ. Gọi B' , C' lần lượt là hình chiếu của B, C trên AC và BD.
a/ Chứng minh A, B', C' = 1/2 BC
b/ gọi E là trung điểm BC, chứng minh tam giác EB'C' là tam giác đều
1) Cho tam giác ABC có AB < AC. Đường cao AH. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, AC, AB.
a/ chứng minh PN là đường trung trực của AH
b/ chứng minh tứ giác MNPH là hình thang
2) cho hình thang cân ABCD. có AB // CD. I là giao điểm của 2 đường chéo AC và BC. góc AIB = 60 độ. Gọi B' , C' lần lượt là hình chiếu của B, C trên AC và BD.
a/ Chứng minh B', C' = 1/2 BC
b/ gọi E là trung điểm BC, chứng minh tam giác EB'C' là tam giác đều
Cho tam giác ABC vuông cân tại A . Gọi D là trung điểm của BC. Trên đoạn AD lấy điểm E bất kì ( E khác A và D ). Qua E kẻ các đường vuông góc với AB AC , lần lượt tại M N, .
a) Chứng minh tứ giác AMEN là hình vuông.
b) Chứng minh MN BC / / .
c) Qua M kẻ đường thẳng vuông góc với DN tại F . Chứng minh AFE = 90 . d) Chứng minh B E F , , thẳng hàng.