Cho tứ diện SABC có trọng tâm G. Một mặt phẳng qua G cắt các tia SA, SB và SC theo thứ tự tại A’, B’ và C’. Đặt S A ' S A = m ; S B ' S B = n ; S C ' S C = p .Đẳng thức nào dưới đây là đúng
A. 1 m 2 + 1 n 2 + 1 p 2 = 4
B. 1 m n + 1 n p + 1 p m = 4
C. 1 m + 1 n + 1 p = 4
D. m + n + p = 4
Cho khối chóp S.ABC. Gọi G là trọng tâm của tam giác SBC. Mặt phẳng ( α ) qua AG và song song với BC cắt SB, SC lần lượt tại I, J. Tính tỉ số thể tích của hai khối tứ diện SAIJ và SABC
A. 2 9
B. 2 3
C. 4 9
D. 8 27
Cho khối chóp S.ABC. Gọi G là trọng tâm của tam giác SBC. Mặt phẳng (α) qua AG và song song với BC cắt SB,SC lần lượt tại I,J. Tính tỉ số thể tích của hai khối tứ diện SAIJ và SABC.
A. 1 9 .
B. 4 9 .
C. 1 3 .
D. 2 3 .
Cho hình chóp S.ABC có SA = SB = SC = 1. Gọi G là trọng tâm của tứ diện. Xét mặt phẳng (α) thay đổi đi qua điểm G và cắt các cạnh SA, SB, SC lần lượt tại D, E, F. Giá trị lớn nhất của biểu thức P = 1 S D . S E + 1 S E . S F + 1 S F . S D bằng
A. 16 3
B. 27 4
C. 16 9
D. 9 4
Cho tứ diện đều S.ABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất V m i n của khối tứ diện SAMN.
A. V min = 2 27
B. V min = 4 9
C. V min = 2 18
D. V min = 2 36
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm SC. Mặt phẳng AK cắt các cạnh SB, SD lần lượt tại M và N. Gọi V 1 , V theo thứ tự là thể tích khối tứ diện S.AMKN và hình chóp S.ABCD. Giá trị nhỏ nhất của tỷ số V 1 V bằng:
A. 1 2
B. 2 3
C. 1 3
D. 3 8
Cho hình chóp S.ABCD có đáy là hình vuông cạnh cạnh 2 2 bên SA vuông góc với mặt phẳng đáy và SA = 3 Mặt phẳng qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 125 π 6
B. V = 32 π 3
C. V = 108 π 3
D. V = 64 2 π 3
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, A C = a 2 biết SA vuông góc với mặt đáy, SA = a. Gọi G là trọng tâm của tam giác SBC, α là mặt phẳng đi qua AG và song song với BC cắt SB, SC lần lượt tại M và N. Tính thể tích V của khối đa diện AMNBC.
A. V = 4 9 a 3
B. V = 2 27 a 3
C. V = 5 27 a 3
D. V = 5 54 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh cạnh SA vuông góc với mặt phẳng đáy. Mặt phẳng qua A và vuông góc SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 2 24
B. V = π 2 12
C. V = 3 π 2
D. V = 4 π 3