Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB và BC. Điểm P trên cạnh CD sao cho PD = 2CP. Mặt phẳng (MNP) cắt AD tại Q. Tính thể tích khối đa diện BMNPQD.
Cho tứ diện ABCD đều cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB, BC. Điểm P trên cạnh CD sao cho PC=2PD. Mặt phẳng (MNP) cắt cạnh AD tại Q. Thể tích của khối đa diện BMNPQD bằng
A. 11 2 216
B. 2 27
C. 5 2 108
D. 7 2 216
Cho tứ diện ABCD có thể tích bằng 3. Gọi N, P lần lượt là trung điểm của BC, CD; M là điểm đoạn AB sao cho B M = 2 A M . Mặt phẳng (MNP) cắt AD tại Q. Thể tích khối đa diện AMQPCN bằng
A. 7 3
B. 15 16
C. 7 6
D. 15 8
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho tứ diện ABCD,M,N lần lượt là trung điểm của AB và BC, P là điểm trên cạnh CD sao cho CP=2PD Mặt phẳng (MNP) cắt AD tại Q. Tính tỷ số A Q Q D .
A. 1 2
B. 3
C. 2 3
D. 2
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm AB, BC và điểm P là điểm đối xứng với B qua D. Mặt phẳng (MNP) chia tứ diện thành hai phần có tỉ số thể tích là
A. 1 2
B. 7 11
C. 7 18
D. 11 18
Cho tứ diện ABCD, M, N lần lượt là trung điểm của AB,BC. P là điểm trên cạnh AC sao cho CP=2PD. Mặt phẳng (MNP) cắt AD tại Q. Tính A Q Q D
A. 1/2
B. 3
C.2/3
D. 2
Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N lần lượt là trung điểm các cạnh AD, BD. Gọi P là điểm trên cạnh AB sao cho P B P A = 2018 2017 . Tính thể tích V của khối tứ diện PMNC.
A. 27. 2 12
B. 9.2018. 2 16.2017
C. 9. 2 16
D. 9.2017. 2 16.2018