Cho tứ diện ABCD và ba điểm M, N, P lần lượt nằm trên các cạnh AB, AC, AD mà không trùng với các đỉnh của tứ diện. Thiết diện của hình tứ diện ABCD khi cắt bởi mặt phẳng M N P là
A. Một tam giác
B. Một ngũ giá
C. Một đoạn thẳng
D. Một tứ giác
Cho tứ diện ABCD và M, N là các điểm thay đổi trên cạnh AB và CD sao cho A M M B = C N N D . Gọi P là một điểm trên cạnh AC và S là diện tích thiết diện cắt bởi mặt phẳng M N P và hình chóp. Tính tỉ số k của diện tích tam giác MNP và diện tích thiết diện S.
A. 2 k k + 1 .
B. 1 k .
C. k k + 1 .
D. 1 k + 1 .
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a . Gọi M , N lần lượt là trung điểm các cạnh AC , BC ; P là trọng tâm tam giác BCD . Mặt phẳng (MNP) cắt tứ diện theo một thiết diện có diện tích là:
A. a 2 11 2
B. a 2 2 4
C. a 2 11 4
D. a 2 3 4
Cho tứ diện đều ABCD cạnh a. Gọi M,N,G lần lượt là trung điểm của các cạnh AB, BC và trọng tâm tam giác ACD. Diện tích của thiết diện khi cắt tứ diện bởi mặt phẳng (MNG) bằng
A. 7 a 2 3 48
B. 7 a 2 3 24
C. a 2 3 16
D. a 2 3 48
Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không là trung điểm của BC). Thiết diện của tứ diện bị cắt bởi mặt phẳng M N P là
A. một tứ giác
B. một ngũ giác
C. một lục giác
D. một tam giác
Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C,D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T)
A. S = a 2 2
B. S = a 2 3 6
C. S = a 2 3 9
D. S = a 2 6
Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C, D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T).
A. S = a 2 2 .
B. S = a 2 3 6 .
C. S = a 2 3 9 .
D. S = a 2 6 .
Cho tứ diện ABCD. Gọi M là một điểm bất kì nằm trên đoạn AC (khác A và C). Mặt phẳng (P) qua M và song song với các đường thẳng AB, CD. Thiết diện của (P) với tứ diện đã cho là hình gì?
A. Hình vuông
B. Hình bình hành
C. Hình chữ nhật
D. Hình thang cân
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp S.ABCD cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB,CD để thiết diện đó là hình bình hành?
A. AB = 3CD
B. AB = 2CD
C. CD = 2AB
D. CD = 3AB