Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C,D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T)
A. S = a 2 2
B. S = a 2 3 6
C. S = a 2 3 9
D. S = a 2 6
Cho tứ diện đều ABCD cạnh a. Gọi M,N,G lần lượt là trung điểm của các cạnh AB, BC và trọng tâm tam giác ACD. Diện tích của thiết diện khi cắt tứ diện bởi mặt phẳng (MNG) bằng
A. 7 a 2 3 48
B. 7 a 2 3 24
C. a 2 3 16
D. a 2 3 48
Cho tứ diện đều ABCD có các cạnh bằng a. Gọi M là trung điểm của cạnh BC. Tính diện tích thiết diện của tứ diện khi cắt bởi mặt phẳng đi qua M và song song với mặt phẳng (ABD)
A. a 2 3 4
B. a 2 3 8
C. a 2 3 16
D. a 2 3 12
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng A B D cắt cạnh AB tại điểm F. Thể tích của khối tứ diện AECF bằng
A. 2 a 3 15
B. 2 a 3 30
C. 2 a 3 40
D. 2 a 3 60
Cho hình tứ diện ABCD có tất cả các cạnh bằng 6a. Gọi M, N lần lượt là trung điểm của CA, CB. P là điểm trên cạnh BD sao cho BP=2PD. Diện tích S thiết diện của tứ diện ABCD bị cắt bởi (MNP) là
A. S = 5 a 2 147 2
B. S = 5 a 2 147 4
C. S = 5 a 2 51 2
D. S = 5 a 2 51 4
Cho khối tứ diện đều ABCD cạnh a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng (ABD) cắt cạnh AB tại điểm F. Tính thể tích V của khối tứ diện AECF.
A. V = 2 a 3 30 .
B. V = 2 a 3 60 .
C. V = 2 a 3 40 .
D. V = 2 a 3 15 .
Cho khối tứ diện đều ABCD cạnh a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng (ABD) cắt cạnh AB tại điểm F. Tính thể tích V của khối tứ diện AECF.
A. V = 2 a 3 30
B. V = 2 a 3 60
C. V = 2 a 3 40
D. V = 2 a 3 15