Cho khối tứ diện ADCD có thể tích V. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
A. V 27
B. 4 V 27
C. 2 V 81
D. V 9
Cho khối tứ diện ABCD có thể tích là V. Gọi E, F, G lần lượt là trung điểm BC, BD, CD và M, N, P, Q lần lượt là trọng tâm ∆ A B C ; ∆ A B D ; ∆ A C D ; ∆ B C D . Tính thể tích khối tứ diện MNPQ theo V.
A. V 9
B. V 3
C. 2 V 9
D. V 27
Cho khối tứ diện đều ABCD cạnh bằng 2cm Gọi M, N, P lần lượt là trọng tâm của ba tam giác ABC, ABD, ACD. Tính thể tích V của khối chóp AMNP.
A. V = 2 162 c m 3
B. V = 2 2 81 c m 3
C. V = 4 2 81 c m 3
D. V = 2 144 c m 3
Cho hình hộp chữ nhật A B C . D A ’ B ’ C ’ D ’ có thể tích bằng 1 và G là trọng tâm Δ B C D ' . Thể tích V của khối chóp G . A B C ' là
A. 1/3
B. 1/6
C. 1/12
D. 1/18
Cho khối chóp tam giác S.ABC có đỉnh S và đáy là tam giác ABC. Gọi V là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo V thể tích của phần chứa đáy của khối chóp.
A. 37V/64
B. 27V/64
C.19V/27
D. 8V/27
Cho tứ diện ABCD có thể tích V . Gọi M;N;P;Q lần lượt là trọng tâm tam giác A B C , A C D , A B D và BCD . Thể tích khối tứ diện MNPQ bằng:
A. 4V/9
B. V/27
C. V/9
D. 4V/27
Cho tứ diện ABCD có thể tích V. Gọi A 1 B 1 C 1 D 1 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC và có thể tích V 1 . Gọi A 2 B 2 C 2 D 2 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác B 1 C 1 D 1 , C 1 D 1 A 1 , D 1 A 1 B 1 , A 1 B 1 C 1 và có thể tích V 2 … cứ như vậy cho tứ diện A n B n C n D n có thể tích V n với n là số tự nhiên lớn hơn 1. Tính giá trị của biểu thức P = lim n → + ∞ V + V 1 + ... + V n .
A. 27 26 V
B. 1 27 V
C. 9 8 V
D. 82 81 V
Cho hình chópS.ABCD có đáy ABCD là hình bình hành. M là trung điểm SB và G là trọng tâm của tam giác SBC. Gọi V , V ' lần lượt là thể tích của các khối chóp M.ABC và G.ABD tính tỉ số V V '
A. V V ' = 3 2
B. V V ' = 4 3
C. V V ' = 5 3
D. V V ' = 2 3
Cho khối chóp tứ giác SABCD có thể tích V, đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm các cạnh SB, BC, CD, DA. Tính thể tích khối chóp M.CNQP theo V.
A. 3 V 4
B. 3 V 8
C. 3 V 16
D. V 16