Đáp án A
Gọi H và K lần lượt là hình chiếu của M và G xuống ABCD
Ta có V V ' = 1 3 M H . S A B C 1 3 G K . S A D B = 3 2 . 1 2 S A B C D 1 2 S A B C D = 3 2
Đáp án A
Gọi H và K lần lượt là hình chiếu của M và G xuống ABCD
Ta có V V ' = 1 3 M H . S A B C 1 3 G K . S A D B = 3 2 . 1 2 S A B C D 1 2 S A B C D = 3 2
Cho hình chóp S.ABCD có đáyABCD là hình bình hành. M là trung điểm SB và G là trọng tâm của tam giác SBC. Gọi V , V ' lần lượt là thể tích của các khối chóp M . A B C và G . A B D , tính tỉ số V V '
A. V V ' = 3 2
B. V V ' = 4 3
C. V V ' = 5 3
D. V V ' = 2 3
Cho khối chóp tứ giác SABCD có thể tích V, đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm các cạnh SB, BC, CD, DA. Tính thể tích khối chóp M.CNQP theo V.
A. 3 V 4
B. 3 V 8
C. 3 V 16
D. V 16
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Biết thể tích khối chóp S.MNPQ là V, khi đó thể tích của khối chóp S.ABCD là
A. 27 V 4 .
B. 9 2 2 V .
C. 9 V 4 .
D. 81 V 8 .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. I nằm trên cạnh SC sao cho I S = 2 I C . Mặt phẳng (P)chứa cạnh AI cắt cạnh SB;SD lần lượt tại M;N. Gọi V ' , V lần lượt là thể tích khối chóp S . A M I N và S . A B C D . Tính giá trị nhỏ nhất của tỷ số thể tích V V '
A. 4/5
B. 5/54
C. 8/15
D. 5/24
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm SC. Mặt phẳng (P) qua AK cắt các cạnh SB, SD lần lượt tại M, N. Gọi V và V’ lần lượt là thể tích các khối chóp S.ABCD và S.AMKN. Tỉ số V ' V có giá trị nhỏ nhất bằng
A. 1 5 .
B. 3 8 .
C. 1 3 .
D. 1 2 .
Cho hình chóp S.ABC có đáy là tam giác vuông cân ở B, A C = a 2 , S A ⊥ m p A B C , S A = a . Gọi G là trọng tâm tam giác SBC, mặt phẳng (α) đi qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính thể tích V của khối chóp S.AMN
A. V = a 3 9
B. V = 2 a 3 27
C. V = 2 a 3 9
D. V = a 3 6
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, A C = a 2 biết SA vuông góc với mặt đáy, SA = a. Gọi G là trọng tâm của tam giác SBC, α là mặt phẳng đi qua AG và song song với BC cắt SB, SC lần lượt tại M và N. Tính thể tích V của khối đa diện AMNBC.
A. V = 4 9 a 3
B. V = 2 27 a 3
C. V = 5 27 a 3
D. V = 5 54 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. I nằm trên cạnh SC sao cho IS = 2IC. Mặt phẳng (P) chứa cạnh AI cắt cạnh SB, SD lần lượt tại M, N. Gọi V ’ , V lần lượt là thể tích khối chóp S.AMIN và S.ABCD. Tính giá trị nhỏ nhất của tỷ số thể tích V ' V
A. 4 5
B. 5 54
C. 8 15
D. 5 24
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Gọi E là điểm trên cạnh SC sao cho EC=2ES , α là mặt phẳng chứa đường thẳng AE và song song với đường thẳng BD, cắt hai cạnh SB, SD lần lượt tại hai điểm M, N. Tính theo V thể tích khối chóp S.AMEN.
A. V 6
B. V 27
C. V 9
D. V 12