Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. I nằm trên cạnh SC sao cho I S = 2 I C .  Mặt phẳng (P)chứa cạnh AI cắt cạnh SB;SD lần lượt tại M;N. Gọi V ' , V  lần lượt là thể tích khối chóp S . A M I N và  S . A B C D . Tính giá trị nhỏ nhất của tỷ số thể tích  V V '

A. 4/5 

B. 5/54

C. 8/15 

D. 5/24

Cao Minh Tâm
21 tháng 6 2018 lúc 5:56

Đáp án C

Gọi O là tâm của hình bình hành ABCD

Gọi H = S K ∩ A I  qua H kẻ d / / B D  cắt SB;SD lần lượt tại M;N

Xét tam giác SAC 

I S I C . A C O C . O H S H = 1 ⇒ O H S C = 1 4 ⇒ S H S C = 4 5

Mà  M N / / B D → S M S B = S N S D = S H S O = 4 5

Ta có  V S . A M I V S . A C D = S M S B . S I S C = 2 3 . S M S B ⇒ V S . A M I V S . A B C D = 1 3 . S M S B

Và  V S . A N I V S . A C D = S N S D . S I S C = 2 3 . S D S D ⇒ V S . A N I V S . A B C D = 1 3 . S N S D

Suy ra  V ' V = 1 3 S M S B + S N S D = 1 3 . 4 5 + 4 5 = 8 15


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết