- Gọi I là trung điểm của AB. Vì ABC và ABD là các tam giác đều nên:
- Suy ra: AB ⊥ (CID) ⇒ AB ⊥ CD.
- Do đó, góc giữa AB và CD bằng 90 ° .
- Gọi I là trung điểm của AB. Vì ABC và ABD là các tam giác đều nên:
- Suy ra: AB ⊥ (CID) ⇒ AB ⊥ CD.
- Do đó, góc giữa AB và CD bằng 90 ° .
Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều. Góc giữa AB và CD là?
A.120°
B. 60°
C. 90°
D. 30°
Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều chứng minh rằng AB vuông góc với CD
Cho khối tứ diện ABCD có ABC và BCD là các tam giác đều cạnh a. Góc giữa hai mặt phẳng (ABC) và (BCD) bằng 60 O . Tính thể tích V của khối tứ diện ABCD theo a:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa AC với mặt phẳng (ABD) bằng:
A. 5
B. 1
C. 51 17
D. Không xác định
Cho tứ diện ABCD có BD =3, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 11, số đo góc giữa hai mặt phẳng (ABD) và (BCD) là
A. a r c sin 33 40
B. a r c sin 11 40
C. a r c cos 33 40
D. a r c cos 11 40
Cho tứ diện ABCD có hai mặt ABC, BCD là các tam giác đều cạnh a và nằm trong các mặt phẳng vuông góc với nhau. Thể tích của khối tứ diện ABCD là:
Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB =a, AC =b. Tam giác ACD vuông tại D có CD = a.
a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.
b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chọn khẳng định sai trong các khẳng định sau?
A. A B E ⊥ A D C
B. A B D ⊥ A D C
C. A B C ⊥ D F K
D. D F K ⊥ A D C
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (ABC)⊥(DFK)