Cho tứ diện ABCD có A B = A D = B C = B D , A B = a , C D = a 30 . Khoảng cách giữa hai đường thẳng AB và CD bằng a. Tính khoảng cách h từ điểm cách đều 4 đỉnh A, B, C, D đến mỗi đỉnh đó.
A. h = a 13 2
B. h = a 13 4
C. h = a 3 2
D. h = a 3 4
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c. Khoảng cách giữa hai đường thẳng AB và CD là
A. 1 2 b 2 + c 2 - a 2
B. 1 2 b 2 + c 2 + a 2
C. 1 4 b 2 + c 2 - a 2
D. 1 4 b 2 + c 2 + a 2
Tứ diện ABCD có A B = C D = 4 , A C = B D = 5 , A D = B C = 6. Tính khoảng cách từ điểm A đến mặt phẳng (BCD).
A. 42 7
B. 3 42 14
C. 3 42 7
D. 42 14
Cho hình chóp S.ABCD có đáy là hình thang cân, BC//AD, AB=BC+CD=a, AD=2a. Biết rằng hình chiếu vuông góc của đỉnh S xuống đáy trùng với trung điểm H của AD. Biết rằng SH=a khoảng cách giữa hai đường thẳng AD và SB bằng
A. a 21 7
B. a 3 4
C. a 3 2
D. a 4
Cho hình tứ diện đều ABCD cạnh bằng a, gọi d là khoảng cách giữa hai đường thẳng AB và CD .Tìm d
A. d(AB;CD)=a
B. d(AB;CD)=a/3
C. d(AB;CD)=a/2
D. d A B ; C D = a 2 2
Tứ diện đều ABCD có cạnh bằng a. Tính khoảng cách giữa hai đường thẳng AB và CD
A. a 3
B. a 3 2
C. a 2 2
D. a
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC),AC =AD = 4, AB =3, BC = 5. Tính khoảng cách d từ điểm A đến mặt phẳng (BCD).
A. d = 12 34
B. d = 60 769
C. d = 769 60
D. d = 34 12
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng A B C , A C = A D = 4 , A B = 3 , B C = 5. Tính khoảng cách d từ điểm A đến mặt phẳng (BCD)
A. d = 12 34
B. d = 60 769
C. d = 769 60
D. d = 34 12
Cho tứ diện ABCD có A B = A D = a 2 , B C = B D = a và C A = C D = x . Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là
A. 60 0 .
B. 45 0 .
C. 90 0 .
D. 120 0 .