Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A , D , AD = DC = a , AB = 2a (a > 0) Hình chiếu của S lên mặt đáy trùng với trung điểm I của AD. Thể tích khối chóp S.IBC biết góc giữa SC và mặt đáy bằng 60 °
A. m = - 3
B. m = - 1 2
C. m = 1 2
D. m = 1
Cho khối chóp S.ABCD có đáy ABCD là hình thang cân với đáy AD và BC. Biết A D = 2 a , A B = B C = C D = a . Hình chiếu vuông góc của S trên mặt phẳng A B C D là điểm H thuộc đoạn AD thỏa mãn H D = 3 H A , SD tạo với đáy một góc 45 ° .Tính thể tích V của khối chóp S.ABCD
A. V = 3 3 a 3 4
B. V = 3 a 3 8
C. V = 3 a 3 3 8
D. V = 9 3 a 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB = BC = CD = a, AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của SB và CD. Tính cosin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a 3 3 4
A . 5 10
B . 3 310 20
C . 310 20
D . 3 5 10
Cho hình chóp S.ABCD có đáy là hình thang vuông tại B. AB=BC=a, AD=2a. Biết SA vuông góc với đáy (ABCD) và SA=a. Gọi M,N lần lượt là trung điểm SB,CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC)
A. 5 5
B. 55 10
C. 3 5 10
D. 2 5 5
Cho hình chóp S.ABCD đáy ABCD là hình thang cân, A D = a , A B = a , B C = a , C D = 2 a . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và SD. Tính cosin góc giữa MN và (SAC) biết thể tích khối chóp S.ABCD bằng a 3 3 4
A. 310 20
B. 3 5 10
C. 3 310 20
D. 5 10
Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB=2a, AD=BC=CD=a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng 2 a 15 5 , tính theo a thể tích V của khối chóp
A. V = 3 a 3 3 4
B. V = 3 a 3 4
C. V = 3 a 3 5 4
D. V = 3 a 3 2 4
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA vuông góc với mặt đáy (ABCD), SA = a. Gọi M, N lần lượt là trung điểm của SB, CD. Tính cosin của góc giữa đường thẳng MN và (SAC)
A. 2 5
B. 55 10
C. 3 5 10
D. 1 5
Cho hình chóp S . A B C D có đáy là hình vuông cạnh 2a , hình chiếu của S lên mặt đáy trùng với điểm H thỏa mãn B H → = 2 5 B D → . Gọi M và N lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AD. Tính khoảng cách giữa hai đường thẳng MN và SC biết S H = 2 a 13 .
A. 38 a 2 13
B. 19 a 2 13
C. 19 a 26 26
D. a 13 26
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AB = BC = a; AD = 2a; S A ⊥ A B C D . Góc giữa mặt phẳng ( SCD ) và ( ABCD ) bằng 45 o . Gọi M là trung điểm AD. Tính theo a thể tích V khối chóp S.MCD và khoảng cách d giữa hai đường thẳng SM và BD
A. V = a 3 2 6 d = a 22 11
B. V = a 3 6 6 d = a 22 11
C. V = a 3 2 6 d = a 22 22
D. V = a 3 6 6 d = a 22 22