Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD). Biết tam giác BCD vuông tại C và A B = a 6 2 ; A C = a 2 ; C D = a Gọi E là trung điểm của AD (tham khảo hình vẽ). Góc giữa hai đường thẳng AB và CE bằng
A. 60 độ
B. 45 độ
C. 30 độ
D. 90 độ
Cho tứ diện đều ABCD. Gọi M là trung điểm cạnh AC (tham khảo hình vẽ bên). Tang góc giữa đường thẳng BM và mặt phẳng (BCD) bằng
A. 3 6
B. 2 3
C. 14 7
D. 14 2
Cho tứ diện đều ABCD. Gọi M là trung điểm cạnh AC (tham khảo hình vẽ bên). Tang góc giữa đường thẳng BM và mặt phẳng (BCD) bằng
A. 3 6
B. 2 3
C. 14 7
D. 14 2
Tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mặt phẳng B C D , A B = 2 a . M là trung điểm của AD, gọi φ là góc giữa đường thẳng CM với mp(BCD), khi đó:
A. tan φ = 3 2
B. tan φ = 2 3 3
C. tan φ = 3 2 2
D. tan φ = 6 3
Cho tứ diện ABCD có AB = 2a, tam giác BCD vuông tại C, BD = 2a, BC = a và 2 A C 2 - A D 2 = 6 a 2 Gọi E là trung điểm cạnh BD. Góc giữa hai đường thẳng AB và EC bằng
A. 30 °
B. 90 °
C. 45 °
D. 60 °
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật cạnh AB = a, AD = a 2 , cạnh bên SA vuông góc với mặt phẳng (ABCD), góc giữa SC và mặt phẳng (ABCD) bằng 60 độ. Gọi M là trung điểm của cạnh SB (tham khảo hình vẽ). Khoảng cách từ điểm M tới mặt phẳng (ABCD) bằng
A. a/2
B. 3a/2
C. 2 a 3
D. a 3
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 ° . M là trung điểm AB, N ∈ B C sao cho B N → = 2 N C → . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC)
A. 2 a 21 7
B. a 21 7
C. a 7 7
D. 2 a 7 7
Cho lăng trụ đứng ABC.A′B′C′ có đáy là tam giác vuông cân tại A,AB=AA'=a (tham khảo hình vẽ bên). Tang góc giữa đường thẳng BC′ và mặt phẳng (ACC′A′) bằng
A. 6 3
B. 2 2
C. 6 2
D. 3 3
Cho hình chóp tứ giác S . A B C D có đáy A B C D là hình chữ nhật cạnh A B = a , A D = a 2 , cạnh bên S A vuông góc với mặt phẳng A B C D , góc giữa S C và mặt phẳng A B C D bằng 60 0 . Gọi M là trung điểm của cạnh S B (tham khảo hình vẽ). Khoảng cách từ điểm M tới mặt phẳng A B C D bằng
A. a 2 .
B. 3 a 2 .
C. 2 a 3 .
D. a 3 .