Vì \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\Rightarrow ca^2+b^2c=ab^2+c^2a\Rightarrow ca^2+b^{2c}-ab^2-c^2a=0\Rightarrow ca\left(a-c\right)-b^2\left(a-c\right)=0\Rightarrow\left(a-c\right)\left(ca-b^2\right)=0\)Mà \(a\ne c\) => \(ca=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\).
Khi đó, ta được \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{b}{c}\Leftrightarrow\dfrac{10a+b}{10b+c}=\dfrac{b}{c}=\dfrac{10a+b-c}{10b+c-c}=\dfrac{a}{b}\) (luôn đúng)
=> đpcm