Cho tỉ lệ thức\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng ta có tỉ lệ sau: \(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh rằng
\(\dfrac{7a^2+3ab}{11a^2+8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Hẹp me
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh:
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
\(Cho\)\(\dfrac{a}{b}\)
\(Chứng\) \(Minh\)
\(\dfrac{7a^2+3ab}{11a^2-8b}\)\(=\)\(\dfrac{7c^2+3cd}{11c^2-8d}\)
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
d)\(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)
Cho tỉ lệ thức: a/b=c/d.Chứng minh
a)ab/cd=(a-b)^2/(cd)^2
b)(a+b/c+d)^2=a^2+b^2/c^2+d^2
c)7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
cho a/b=c/d ,cminh rằng
(7a^2+3ab)/(11a^2-8b^2)=(7c^2+3cd)/(11c^2-8d^2)